Python Pandas Stacked Bar Chart x-axis labels -
i've got below dataframe:
months region open case id closed case id april apac 648888 648888 april 157790 april uk 221456 221456 april apac 425700 april 634156 634156 april uk 109445 april apac 442459 442459 may 218526 may uk 317079 317079 may apac 458098 may 726342 726342 may uk 354155 may apac 463582 463582 may 511059 june uk 97186 97186 june apac 681548 june 799169 799169 june uk 210129 june apac 935887 935887 june 518106 june uk 69279 69279
and getting counts of open case id , closed case id with:
df = df.groupby(['months','region']).count()
i trying replicate below chart generated excel, looks this:
and getting below with:
df[['months','region']].plot.bar(stacked=true, rot=0, alpha=0.5, legend=false)
is there way chart generated python closer chart generated excel in terms of how x-axis , labels broken down?
theres great solution similar question design multi index labels here. can use same parameters of plot ax=fig.gca() in solution i.e
import matplotlib.pyplot plt # add_line,label_len,label_group_bar_table https://stackoverflow.com/a/39502106/4800652 fig = plt.figure() ax = fig.add_subplot(111) #your df.plot code ax parameter here df.plot.bar(stacked=true, rot=0, alpha=0.5, legend=false, ax=fig.gca()) labels = ['' item in ax.get_xticklabels()] ax.set_xticklabels(labels) ax.set_xlabel('') label_group_bar_table(ax, df) fig.subplots_adjust(bottom=.1*df.index.nlevels) plt.show()
output based on sample data:
Comments
Post a Comment