python 3.x - how to add noise to data till the classifier can't classify the data anymore -
i'm working on machine supervised learning problem , i've been asked after classified data add different levels of gaussian noise till algorithms can't classify data more. data floating points , i'm using algorithms such knn, ann, gnb, random forest , others. whatever noise add data classification accuracy never went below 31%. question cause situation , how solve it.
the code i'm using add noise:
import pandas pd import numpy np clean_pd = pd.read_csv("pddata.csv") mu, sigma = 0, 0.02 # creating noise same dimension dataset noise = np.random.normal(mu, sigma, [60000, 3]) print(noise) nois_pd = clean_pd + noise #save noise nois_pd.to_csv("noisedata).csv", index=false)
thanks
Comments
Post a Comment