python - Using Backward Propagation in fmin_cg -


i trying build ann in python, , i've been able far to forward pass, problem when try backward propagation. in function nncostfunction, gradient grad define as:

grad = tr(c_[theta1_grad.swapaxes(1,0).reshape(1,-1), theta2_grad.swapaxes(1,0).reshape(1,-1)]) 

but problem because using scipy.optimize.fmin_cg calculate nn_params , cost, , fmin_cg accepts single value (the j value forward pass) , cannot accept grad...

nn_params, cost = op.fmin_cg(lambda t: nncostfunction(t, input_layer_size, hidden_layer_size, num_labels, x, y, lam), initial_nn_params, gtol = 0.001, maxiter = 40, full_output=1)[0, 1] 

is there way fix can include backward propagation in network? know there scipy.optimize.minimize function, having difficulty understand how use , results need. know needs done?

your appreciated, thanks.

def nncostfunction(nn_params, input_layer_size, hidden_layer_size, num_labels, x, y, lam):     '''      given nn parameters, layer sizes, number of labels, data, , learning rate, returns cost of traversing nn.     '''      theta1 = (reshape(nn_params[:(hidden_layer_size*(input_layer_size+1))],(hidden_layer_size,(input_layer_size+1))))      theta2 = (reshape(nn_params[((hidden_layer_size*(input_layer_size+1))):],(num_labels, (hidden_layer_size+1))))      m = x.shape[0]     n = x.shape[1]      #forward pass     y_eye = eye(num_labels)     y_new = np.zeros((y.shape[0],num_labels))      z in range(y.shape[0]):         y_new[z,:] = y_eye[int(y[z])-1]      y = y_new      a_1 = c_[ones((m,1)),x]     z_2 = tr(theta1.dot(tr(a_1)))      a_2 = tr(sigmoid(theta1.dot(tr(a_1))))     a_2 = c_[ones((a_2.shape[0],1)), a_2]      a_3 = tr(sigmoid(theta2.dot(tr(a_2))))      j_reg = lam/(2.*m) * (sum(sum(theta1[:,1:]**2)) + sum(sum(theta2[:,1:]**2)))      j = (1./m) * sum(sum(-y*log(a_3) - (1-y)*log(1-a_3))) + j_reg      #backprop      d_3 = a_3 - y      d_2 = d_3.dot(theta2[:,1:])*sigmoidgradient(z_2)      theta1_grad = 1./m * tr(d_2).dot(a_1)     theta2_grad = 1./m * tr(d_3).dot(a_2)      #add regularization      theta1_grad[:,1:] = theta1_grad[:,1:] + lam*1.0/m*theta1[:,1:]     theta2_grad[:,1:] = theta2_grad[:,1:] + lam*1.0/m*theta2[:,1:]      #unroll gradients     grad = tr(c_[theta1_grad.swapaxes(1,0).reshape(1,-1), theta2_grad.swapaxes(1,0).reshape(1,-1)])      return j, grad   def nn_train(x,y,lam = 1.0, hidden_layer_size = 10):     '''      train neural network given features , class arrays, learning rate, , size of hidden layer.     return parameters theta1, theta2.     '''      # nn input , output layer sizes     input_layer_size = x.shape[1]     num_labels = unique(y).shape[0] #output layer      # initialize nn parameters     initial_theta1 = randinitializeweights(input_layer_size, hidden_layer_size)     initial_theta2 = randinitializeweights(hidden_layer_size, num_labels)       # unroll parameters     initial_nn_params = np.append(initial_theta1.flatten(1), initial_theta2.flatten(1))     initial_nn_params = reshape(initial_nn_params,(len(initial_nn_params),)) #flatten 1-d array       # find , print initial cost:     j_init = nncostfunction(initial_nn_params,input_layer_size,hidden_layer_size,num_labels,x,y,lam)[0]     grad_init = nncostfunction(initial_nn_params,input_layer_size,hidden_layer_size,num_labels,x,y,lam)[1]     print 'initial j cost: ' + str(j_init)     print 'initial grad cost: ' + str(grad_init)      # implement backprop , train network, run fmin     print 'training neural network...'     print 'fmin results:'      nn_params, cost = op.fmin_cg(lambda t: nncostfunction(t, input_layer_size, hidden_layer_size, num_labels, x, y, lam), initial_nn_params, gtol = 0.001, maxiter = 40, full_output=1)[0, 1]        theta1 = (reshape(nn_params[:(hidden_layer_size*(input_layer_size+1))],(hidden_layer_size,(input_layer_size+1))))      theta2 = (reshape(nn_params[((hidden_layer_size*(input_layer_size+1))):],(num_labels, (hidden_layer_size+1))))      return theta1, theta2 


Comments

Popular posts from this blog

angular - Ionic slides - dynamically add slides before and after -

Add a dynamic header in angular 2 http provider -

minify - Minimizing css files -