python - replace specific range of values in data frame pandas -


i have big data set , there tons of values way on average. example,

            b 1  'h'       10 2  'e'    10000 3  'l'       12 4  'l'        8 5  'o'       11 

and want set b2 cell 0 , tried this,

df['b'] = df['b'].replace([df['b'] > 15], 0) 

but didn't luck. how can make data frame this,

            b 1  'h'       10 2  'e'        0 3  'l'       12 4  'l'        8 5  'o'       11 

thank you!

you close - instead replace use mask:

df['b'] = df['b'].mask(df['b'] > 15, 0) print (df)        b 1  'h'  10 2  'e'   0 3  'l'  12 4  'l'   8 5  'o'  11 

alternative:

df['b'] = np.where(df['b'] > 15, 0, df['b']) print (df)        b 1  'h'  10 2  'e'   0 3  'l'  12 4  'l'   8 5  'o'  11 

if want replace range:

df['b'] = np.where(df['b'].between(8,11), 0, df['b']) print (df)           b 1  'h'      0 2  'e'  10000 3  'l'     12 4  'l'      0 5  'o'      0 

Comments

Popular posts from this blog

angular - Ionic slides - dynamically add slides before and after -

Add a dynamic header in angular 2 http provider -

minify - Minimizing css files -