Python iris NetCDF time gone awry -


something seems have gone wrong between yesterday , today. i’m wondering if might able help? running python using iris.

basically when ran code yesterday got first graph here, today second: enter image description here enter image description here

if run 1 of cordex models (blue line) , 1 of observed data (black) on own, can see both run cordex model seems have funny going on time. enter image description here enter image description here

so printed time coordinates each following cordex model

dimcoord([netcdftime._netcdftime.datetimenoleap(1989, 1, 16, 12, 0, 0, 0, 4, 16),        netcdftime._netcdftime.datetimenoleap(1989, 2, 15, 0, 0, 0, 0, 6, 46),        netcdftime._netcdftime.datetimenoleap(1989, 3, 16, 12, 0, 0, 0, 0, 75),        netcdftime._netcdftime.datetimenoleap(1989, 4, 16, 0, 0, 0, 0, 3, 106),        netcdftime._netcdftime.datetimenoleap(1989, 5, 16, 12, 0, 0, 0, 5, 136),        netcdftime._netcdftime.datetimenoleap(1989, 6, 16, 0, 0, 0, 0, 1, 167),        netcdftime._netcdftime.datetimenoleap(1989, 7, 16, 12, 0, 0, 0, 3, 197),        netcdftime._netcdftime.datetimenoleap(1989, 8, 16, 12, 0, 0, 0, 6, 228),        netcdftime._netcdftime.datetimenoleap(1989, 9, 16, 0, 0, 0, 0, 2, 259),        netcdftime._netcdftime.datetimenoleap(1989, 10, 16, 12, 0, 0, 0, 4, 289),        netcdftime._netcdftime.datetimenoleap(1989, 11, 16, 0, 0, 0, 0, 0, 320),        netcdftime._netcdftime.datetimenoleap(1989, 12, 16, 12, 0, 0, 0, 2, 350),        netcdftime._netcdftime.datetimenoleap(1990, 1, 16, 12, 0, 0, 0, 5, 16),        netcdftime._netcdftime.datetimenoleap(1990, 2, 15, 0, 0, 0, 0, 0, 46),        netcdftime._netcdftime.datetimenoleap(1990, 3, 16, 12, 0, 0, 0, 1, 75),        netcdftime._netcdftime.datetimenoleap(1990, 4, 16, 0, 0, 0, 0, 4, 106),        netcdftime._netcdftime.datetimenoleap(1990, 5, 16, 12, 0, 0, 0, 6, 136),        netcdftime._netcdftime.datetimenoleap(1990, 6, 16, 0, 0, 0, 0, 2, 167),        netcdftime._netcdftime.datetimenoleap(1990, 7, 16, 12, 0, 0, 0, 4, 197),        netcdftime._netcdftime.datetimenoleap(1990, 8, 16, 12, 0, 0, 0, 0, 228),        netcdftime._netcdftime.datetimenoleap(1990, 9, 16, 0, 0, 0, 0, 3, 259),        netcdftime._netcdftime.datetimenoleap(1990, 10, 16, 12, 0, 0, 0, 5, 289),        netcdftime._netcdftime.datetimenoleap(1990, 11, 16, 0, 0, 0, 0, 1, 320),        netcdftime._netcdftime.datetimenoleap(1990, 12, 16, 12, 0, 0, 0, 3, 350),        netcdftime._netcdftime.datetimenoleap(1991, 1, 16, 12, 0, 0, 0, 6, 16),        netcdftime._netcdftime.datetimenoleap(1991, 2, 15, 0, 0, 0, 0, 1, 46),        netcdftime._netcdftime.datetimenoleap(1991, 3, 16, 12, 0, 0, 0, 2, 75),        netcdftime._netcdftime.datetimenoleap(1991, 4, 16, 0, 0, 0, 0, 5, 106),        netcdftime._netcdftime.datetimenoleap(1991, 5, 16, 12, 0, 0, 0, 0, 136),        netcdftime._netcdftime.datetimenoleap(1991, 6, 16, 0, 0, 0, 0, 3, 167),        netcdftime._netcdftime.datetimenoleap(1991, 7, 16, 12, 0, 0, 0, 5, 197),        netcdftime._netcdftime.datetimenoleap(1991, 8, 16, 12, 0, 0, 0, 1, 228),        netcdftime._netcdftime.datetimenoleap(1991, 9, 16, 0, 0, 0, 0, 4, 259),        netcdftime._netcdftime.datetimenoleap(1991, 10, 16, 12, 0, 0, 0, 6, 289),        netcdftime._netcdftime.datetimenoleap(1991, 11, 16, 0, 0, 0, 0, 2, 320),        netcdftime._netcdftime.datetimenoleap(1991, 12, 16, 12, 0, 0, 0, 4, 350),        netcdftime._netcdftime.datetimenoleap(1992, 1, 16, 12, 0, 0, 0, 0, 16),        netcdftime._netcdftime.datetimenoleap(1992, 2, 15, 0, 0, 0, 0, 2, 46),        netcdftime._netcdftime.datetimenoleap(1992, 3, 16, 12, 0, 0, 0, 3, 75),        netcdftime._netcdftime.datetimenoleap(1992, 4, 16, 0, 0, 0, 0, 6, 106),        netcdftime._netcdftime.datetimenoleap(1992, 5, 16, 12, 0, 0, 0, 1, 136),        netcdftime._netcdftime.datetimenoleap(1992, 6, 16, 0, 0, 0, 0, 4, 167),        netcdftime._netcdftime.datetimenoleap(1992, 7, 16, 12, 0, 0, 0, 6, 197),        netcdftime._netcdftime.datetimenoleap(1992, 8, 16, 12, 0, 0, 0, 2, 228),        netcdftime._netcdftime.datetimenoleap(1992, 9, 16, 0, 0, 0, 0, 5, 259),        netcdftime._netcdftime.datetimenoleap(1992, 10, 16, 12, 0, 0, 0, 0, 289),        netcdftime._netcdftime.datetimenoleap(1992, 11, 16, 0, 0, 0, 0, 3, 320),        netcdftime._netcdftime.datetimenoleap(1992, 12, 16, 12, 0, 0, 0, 5, 350),        netcdftime._netcdftime.datetimenoleap(1993, 1, 16, 12, 0, 0, 0, 1, 16),        netcdftime._netcdftime.datetimenoleap(1993, 2, 15, 0, 0, 0, 0, 3, 46),        netcdftime._netcdftime.datetimenoleap(1993, 3, 16, 12, 0, 0, 0, 4, 75),        netcdftime._netcdftime.datetimenoleap(1993, 4, 16, 0, 0, 0, 0, 0, 106),        netcdftime._netcdftime.datetimenoleap(1993, 5, 16, 12, 0, 0, 0, 2, 136),        netcdftime._netcdftime.datetimenoleap(1993, 6, 16, 0, 0, 0, 0, 5, 167),        netcdftime._netcdftime.datetimenoleap(1993, 7, 16, 12, 0, 0, 0, 0, 197),        netcdftime._netcdftime.datetimenoleap(1993, 8, 16, 12, 0, 0, 0, 3, 228),        netcdftime._netcdftime.datetimenoleap(1993, 9, 16, 0, 0, 0, 0, 6, 259),        netcdftime._netcdftime.datetimenoleap(1993, 10, 16, 12, 0, 0, 0, 1, 289),        netcdftime._netcdftime.datetimenoleap(1993, 11, 16, 0, 0, 0, 0, 4, 320),        netcdftime._netcdftime.datetimenoleap(1993, 12, 16, 12, 0, 0, 0, 6, 350),        netcdftime._netcdftime.datetimenoleap(1994, 1, 16, 12, 0, 0, 0, 2, 16),        netcdftime._netcdftime.datetimenoleap(1994, 2, 15, 0, 0, 0, 0, 4, 46),        netcdftime._netcdftime.datetimenoleap(1994, 3, 16, 12, 0, 0, 0, 5, 75),        netcdftime._netcdftime.datetimenoleap(1994, 4, 16, 0, 0, 0, 0, 1, 106),        netcdftime._netcdftime.datetimenoleap(1994, 5, 16, 12, 0, 0, 0, 3, 136),        netcdftime._netcdftime.datetimenoleap(1994, 6, 16, 0, 0, 0, 0, 6, 167),        netcdftime._netcdftime.datetimenoleap(1994, 7, 16, 12, 0, 0, 0, 1, 197),        netcdftime._netcdftime.datetimenoleap(1994, 8, 16, 12, 0, 0, 0, 4, 228),        netcdftime._netcdftime.datetimenoleap(1994, 9, 16, 0, 0, 0, 0, 0, 259),        netcdftime._netcdftime.datetimenoleap(1994, 10, 16, 12, 0, 0, 0, 2, 289),        netcdftime._netcdftime.datetimenoleap(1994, 11, 16, 0, 0, 0, 0, 5, 320),        netcdftime._netcdftime.datetimenoleap(1994, 12, 16, 12, 0, 0, 0, 0, 350),        netcdftime._netcdftime.datetimenoleap(1995, 1, 16, 12, 0, 0, 0, 3, 16),        netcdftime._netcdftime.datetimenoleap(1995, 2, 15, 0, 0, 0, 0, 5, 46),        netcdftime._netcdftime.datetimenoleap(1995, 3, 16, 12, 0, 0, 0, 6, 75),        netcdftime._netcdftime.datetimenoleap(1995, 4, 16, 0, 0, 0, 0, 2, 106),        netcdftime._netcdftime.datetimenoleap(1995, 5, 16, 12, 0, 0, 0, 4, 136),        netcdftime._netcdftime.datetimenoleap(1995, 6, 16, 0, 0, 0, 0, 0, 167),        netcdftime._netcdftime.datetimenoleap(1995, 7, 16, 12, 0, 0, 0, 2, 197),        netcdftime._netcdftime.datetimenoleap(1995, 8, 16, 12, 0, 0, 0, 5, 228),        netcdftime._netcdftime.datetimenoleap(1995, 9, 16, 0, 0, 0, 0, 1, 259),        netcdftime._netcdftime.datetimenoleap(1995, 10, 16, 12, 0, 0, 0, 3, 289),        netcdftime._netcdftime.datetimenoleap(1995, 11, 16, 0, 0, 0, 0, 6, 320),        netcdftime._netcdftime.datetimenoleap(1995, 12, 16, 12, 0, 0, 0, 1, 350),        netcdftime._netcdftime.datetimenoleap(1996, 1, 16, 12, 0, 0, 0, 4, 16),        netcdftime._netcdftime.datetimenoleap(1996, 2, 15, 0, 0, 0, 0, 6, 46),        netcdftime._netcdftime.datetimenoleap(1996, 3, 16, 12, 0, 0, 0, 0, 75),        netcdftime._netcdftime.datetimenoleap(1996, 4, 16, 0, 0, 0, 0, 3, 106),        netcdftime._netcdftime.datetimenoleap(1996, 5, 16, 12, 0, 0, 0, 5, 136),        netcdftime._netcdftime.datetimenoleap(1996, 6, 16, 0, 0, 0, 0, 1, 167),        netcdftime._netcdftime.datetimenoleap(1996, 7, 16, 12, 0, 0, 0, 3, 197),        netcdftime._netcdftime.datetimenoleap(1996, 8, 16, 12, 0, 0, 0, 6, 228),        netcdftime._netcdftime.datetimenoleap(1996, 9, 16, 0, 0, 0, 0, 2, 259),        netcdftime._netcdftime.datetimenoleap(1996, 10, 16, 12, 0, 0, 0, 4, 289),        netcdftime._netcdftime.datetimenoleap(1996, 11, 16, 0, 0, 0, 0, 0, 320),        netcdftime._netcdftime.datetimenoleap(1996, 12, 16, 12, 0, 0, 0, 2, 350),        netcdftime._netcdftime.datetimenoleap(1997, 1, 16, 12, 0, 0, 0, 5, 16),        netcdftime._netcdftime.datetimenoleap(1997, 2, 15, 0, 0, 0, 0, 0, 46),        netcdftime._netcdftime.datetimenoleap(1997, 3, 16, 12, 0, 0, 0, 1, 75),        netcdftime._netcdftime.datetimenoleap(1997, 4, 16, 0, 0, 0, 0, 4, 106),        netcdftime._netcdftime.datetimenoleap(1997, 5, 16, 12, 0, 0, 0, 6, 136),        netcdftime._netcdftime.datetimenoleap(1997, 6, 16, 0, 0, 0, 0, 2, 167),        netcdftime._netcdftime.datetimenoleap(1997, 7, 16, 12, 0, 0, 0, 4, 197),        netcdftime._netcdftime.datetimenoleap(1997, 8, 16, 12, 0, 0, 0, 0, 228),        netcdftime._netcdftime.datetimenoleap(1997, 9, 16, 0, 0, 0, 0, 3, 259),        netcdftime._netcdftime.datetimenoleap(1997, 10, 16, 12, 0, 0, 0, 5, 289),        netcdftime._netcdftime.datetimenoleap(1997, 11, 16, 0, 0, 0, 0, 1, 320),        netcdftime._netcdftime.datetimenoleap(1997, 12, 16, 12, 0, 0, 0, 3, 350),        netcdftime._netcdftime.datetimenoleap(1998, 1, 16, 12, 0, 0, 0, 6, 16),        netcdftime._netcdftime.datetimenoleap(1998, 2, 15, 0, 0, 0, 0, 1, 46),        netcdftime._netcdftime.datetimenoleap(1998, 3, 16, 12, 0, 0, 0, 2, 75),        netcdftime._netcdftime.datetimenoleap(1998, 4, 16, 0, 0, 0, 0, 5, 106),        netcdftime._netcdftime.datetimenoleap(1998, 5, 16, 12, 0, 0, 0, 0, 136),        netcdftime._netcdftime.datetimenoleap(1998, 6, 16, 0, 0, 0, 0, 3, 167),        netcdftime._netcdftime.datetimenoleap(1998, 7, 16, 12, 0, 0, 0, 5, 197),        netcdftime._netcdftime.datetimenoleap(1998, 8, 16, 12, 0, 0, 0, 1, 228),        netcdftime._netcdftime.datetimenoleap(1998, 9, 16, 0, 0, 0, 0, 4, 259),        netcdftime._netcdftime.datetimenoleap(1998, 10, 16, 12, 0, 0, 0, 6, 289),        netcdftime._netcdftime.datetimenoleap(1998, 11, 16, 0, 0, 0, 0, 2, 320),        netcdftime._netcdftime.datetimenoleap(1998, 12, 16, 12, 0, 0, 0, 4, 350),        netcdftime._netcdftime.datetimenoleap(1999, 1, 16, 12, 0, 0, 0, 0, 16),        netcdftime._netcdftime.datetimenoleap(1999, 2, 15, 0, 0, 0, 0, 2, 46),        netcdftime._netcdftime.datetimenoleap(1999, 3, 16, 12, 0, 0, 0, 3, 75),        netcdftime._netcdftime.datetimenoleap(1999, 4, 16, 0, 0, 0, 0, 6, 106),        netcdftime._netcdftime.datetimenoleap(1999, 5, 16, 12, 0, 0, 0, 1, 136),        netcdftime._netcdftime.datetimenoleap(1999, 6, 16, 0, 0, 0, 0, 4, 167),        netcdftime._netcdftime.datetimenoleap(1999, 7, 16, 12, 0, 0, 0, 6, 197),        netcdftime._netcdftime.datetimenoleap(1999, 8, 16, 12, 0, 0, 0, 2, 228),        netcdftime._netcdftime.datetimenoleap(1999, 9, 16, 0, 0, 0, 0, 5, 259),        netcdftime._netcdftime.datetimenoleap(1999, 10, 16, 12, 0, 0, 0, 0, 289),        netcdftime._netcdftime.datetimenoleap(1999, 11, 16, 0, 0, 0, 0, 3, 320),        netcdftime._netcdftime.datetimenoleap(1999, 12, 16, 12, 0, 0, 0, 5, 350),        netcdftime._netcdftime.datetimenoleap(2000, 1, 16, 12, 0, 0, 0, 1, 16),        netcdftime._netcdftime.datetimenoleap(2000, 2, 15, 0, 0, 0, 0, 3, 46),        netcdftime._netcdftime.datetimenoleap(2000, 3, 16, 12, 0, 0, 0, 4, 75),        netcdftime._netcdftime.datetimenoleap(2000, 4, 16, 0, 0, 0, 0, 0, 106),        netcdftime._netcdftime.datetimenoleap(2000, 5, 16, 12, 0, 0, 0, 2, 136),        netcdftime._netcdftime.datetimenoleap(2000, 6, 16, 0, 0, 0, 0, 5, 167),        netcdftime._netcdftime.datetimenoleap(2000, 7, 16, 12, 0, 0, 0, 0, 197),        netcdftime._netcdftime.datetimenoleap(2000, 8, 16, 12, 0, 0, 0, 3, 228),        netcdftime._netcdftime.datetimenoleap(2000, 9, 16, 0, 0, 0, 0, 6, 259),        netcdftime._netcdftime.datetimenoleap(2000, 10, 16, 12, 0, 0, 0, 1, 289),        netcdftime._netcdftime.datetimenoleap(2000, 11, 16, 0, 0, 0, 0, 4, 320),        netcdftime._netcdftime.datetimenoleap(2000, 12, 16, 12, 0, 0, 0, 6, 350),        netcdftime._netcdftime.datetimenoleap(2001, 1, 16, 12, 0, 0, 0, 2, 16),        netcdftime._netcdftime.datetimenoleap(2001, 2, 15, 0, 0, 0, 0, 4, 46),        netcdftime._netcdftime.datetimenoleap(2001, 3, 16, 12, 0, 0, 0, 5, 75),        netcdftime._netcdftime.datetimenoleap(2001, 4, 16, 0, 0, 0, 0, 1, 106),        netcdftime._netcdftime.datetimenoleap(2001, 5, 16, 12, 0, 0, 0, 3, 136),        netcdftime._netcdftime.datetimenoleap(2001, 6, 16, 0, 0, 0, 0, 6, 167),        netcdftime._netcdftime.datetimenoleap(2001, 7, 16, 12, 0, 0, 0, 1, 197),        netcdftime._netcdftime.datetimenoleap(2001, 8, 16, 12, 0, 0, 0, 4, 228),        netcdftime._netcdftime.datetimenoleap(2001, 9, 16, 0, 0, 0, 0, 0, 259),        netcdftime._netcdftime.datetimenoleap(2001, 10, 16, 12, 0, 0, 0, 2, 289),        netcdftime._netcdftime.datetimenoleap(2001, 11, 16, 0, 0, 0, 0, 5, 320),        netcdftime._netcdftime.datetimenoleap(2001, 12, 16, 12, 0, 0, 0, 0, 350),        netcdftime._netcdftime.datetimenoleap(2002, 1, 16, 12, 0, 0, 0, 3, 16),        netcdftime._netcdftime.datetimenoleap(2002, 2, 15, 0, 0, 0, 0, 5, 46),        netcdftime._netcdftime.datetimenoleap(2002, 3, 16, 12, 0, 0, 0, 6, 75),        netcdftime._netcdftime.datetimenoleap(2002, 4, 16, 0, 0, 0, 0, 2, 106),        netcdftime._netcdftime.datetimenoleap(2002, 5, 16, 12, 0, 0, 0, 4, 136),        netcdftime._netcdftime.datetimenoleap(2002, 6, 16, 0, 0, 0, 0, 0, 167),        netcdftime._netcdftime.datetimenoleap(2002, 7, 16, 12, 0, 0, 0, 2, 197),        netcdftime._netcdftime.datetimenoleap(2002, 8, 16, 12, 0, 0, 0, 5, 228),        netcdftime._netcdftime.datetimenoleap(2002, 9, 16, 0, 0, 0, 0, 1, 259),        netcdftime._netcdftime.datetimenoleap(2002, 10, 16, 12, 0, 0, 0, 3, 289),        netcdftime._netcdftime.datetimenoleap(2002, 11, 16, 0, 0, 0, 0, 6, 320),        netcdftime._netcdftime.datetimenoleap(2002, 12, 16, 12, 0, 0, 0, 1, 350),        netcdftime._netcdftime.datetimenoleap(2003, 1, 16, 12, 0, 0, 0, 4, 16),        netcdftime._netcdftime.datetimenoleap(2003, 2, 15, 0, 0, 0, 0, 6, 46),        netcdftime._netcdftime.datetimenoleap(2003, 3, 16, 12, 0, 0, 0, 0, 75),        netcdftime._netcdftime.datetimenoleap(2003, 4, 16, 0, 0, 0, 0, 3, 106),        netcdftime._netcdftime.datetimenoleap(2003, 5, 16, 12, 0, 0, 0, 5, 136),        netcdftime._netcdftime.datetimenoleap(2003, 6, 16, 0, 0, 0, 0, 1, 167),        netcdftime._netcdftime.datetimenoleap(2003, 7, 16, 12, 0, 0, 0, 3, 197),        netcdftime._netcdftime.datetimenoleap(2003, 8, 16, 12, 0, 0, 0, 6, 228),        netcdftime._netcdftime.datetimenoleap(2003, 9, 16, 0, 0, 0, 0, 2, 259),        netcdftime._netcdftime.datetimenoleap(2003, 10, 16, 12, 0, 0, 0, 4, 289),        netcdftime._netcdftime.datetimenoleap(2003, 11, 16, 0, 0, 0, 0, 0, 320),        netcdftime._netcdftime.datetimenoleap(2003, 12, 16, 12, 0, 0, 0, 2, 350),        netcdftime._netcdftime.datetimenoleap(2004, 1, 16, 12, 0, 0, 0, 5, 16),        netcdftime._netcdftime.datetimenoleap(2004, 2, 15, 0, 0, 0, 0, 0, 46),        netcdftime._netcdftime.datetimenoleap(2004, 3, 16, 12, 0, 0, 0, 1, 75),        netcdftime._netcdftime.datetimenoleap(2004, 4, 16, 0, 0, 0, 0, 4, 106),        netcdftime._netcdftime.datetimenoleap(2004, 5, 16, 12, 0, 0, 0, 6, 136),        netcdftime._netcdftime.datetimenoleap(2004, 6, 16, 0, 0, 0, 0, 2, 167),        netcdftime._netcdftime.datetimenoleap(2004, 7, 16, 12, 0, 0, 0, 4, 197),        netcdftime._netcdftime.datetimenoleap(2004, 8, 16, 12, 0, 0, 0, 0, 228),        netcdftime._netcdftime.datetimenoleap(2004, 9, 16, 0, 0, 0, 0, 3, 259),        netcdftime._netcdftime.datetimenoleap(2004, 10, 16, 12, 0, 0, 0, 5, 289),        netcdftime._netcdftime.datetimenoleap(2004, 11, 16, 0, 0, 0, 0, 1, 320),        netcdftime._netcdftime.datetimenoleap(2004, 12, 16, 12, 0, 0, 0, 3, 350),        netcdftime._netcdftime.datetimenoleap(2005, 1, 16, 12, 0, 0, 0, 6, 16),        netcdftime._netcdftime.datetimenoleap(2005, 2, 15, 0, 0, 0, 0, 1, 46),        netcdftime._netcdftime.datetimenoleap(2005, 3, 16, 12, 0, 0, 0, 2, 75),        netcdftime._netcdftime.datetimenoleap(2005, 4, 16, 0, 0, 0, 0, 5, 106),        netcdftime._netcdftime.datetimenoleap(2005, 5, 16, 12, 0, 0, 0, 0, 136),        netcdftime._netcdftime.datetimenoleap(2005, 6, 16, 0, 0, 0, 0, 3, 167),        netcdftime._netcdftime.datetimenoleap(2005, 7, 16, 12, 0, 0, 0, 5, 197),        netcdftime._netcdftime.datetimenoleap(2005, 8, 16, 12, 0, 0, 0, 1, 228),        netcdftime._netcdftime.datetimenoleap(2005, 9, 16, 0, 0, 0, 0, 4, 259),        netcdftime._netcdftime.datetimenoleap(2005, 10, 16, 12, 0, 0, 0, 6, 289),        netcdftime._netcdftime.datetimenoleap(2005, 11, 16, 0, 0, 0, 0, 2, 320),        netcdftime._netcdftime.datetimenoleap(2005, 12, 16, 12, 0, 0, 0, 4, 350),        netcdftime._netcdftime.datetimenoleap(2006, 1, 16, 12, 0, 0, 0, 0, 16),        netcdftime._netcdftime.datetimenoleap(2006, 2, 15, 0, 0, 0, 0, 2, 46),        netcdftime._netcdftime.datetimenoleap(2006, 3, 16, 12, 0, 0, 0, 3, 75),        netcdftime._netcdftime.datetimenoleap(2006, 4, 16, 0, 0, 0, 0, 6, 106),        netcdftime._netcdftime.datetimenoleap(2006, 5, 16, 12, 0, 0, 0, 1, 136),        netcdftime._netcdftime.datetimenoleap(2006, 6, 16, 0, 0, 0, 0, 4, 167),        netcdftime._netcdftime.datetimenoleap(2006, 7, 16, 12, 0, 0, 0, 6, 197),        netcdftime._netcdftime.datetimenoleap(2006, 8, 16, 12, 0, 0, 0, 2, 228),        netcdftime._netcdftime.datetimenoleap(2006, 9, 16, 0, 0, 0, 0, 5, 259),        netcdftime._netcdftime.datetimenoleap(2006, 10, 16, 12, 0, 0, 0, 0, 289),        netcdftime._netcdftime.datetimenoleap(2006, 11, 16, 0, 0, 0, 0, 3, 320),        netcdftime._netcdftime.datetimenoleap(2006, 12, 16, 12, 0, 0, 0, 5, 350),        netcdftime._netcdftime.datetimenoleap(2007, 1, 16, 12, 0, 0, 0, 1, 16),        netcdftime._netcdftime.datetimenoleap(2007, 2, 15, 0, 0, 0, 0, 3, 46),        netcdftime._netcdftime.datetimenoleap(2007, 3, 16, 12, 0, 0, 0, 4, 75),        netcdftime._netcdftime.datetimenoleap(2007, 4, 16, 0, 0, 0, 0, 0, 106),        netcdftime._netcdftime.datetimenoleap(2007, 5, 16, 12, 0, 0, 0, 2, 136),        netcdftime._netcdftime.datetimenoleap(2007, 6, 16, 0, 0, 0, 0, 5, 167),        netcdftime._netcdftime.datetimenoleap(2007, 7, 16, 12, 0, 0, 0, 0, 197),        netcdftime._netcdftime.datetimenoleap(2007, 8, 16, 12, 0, 0, 0, 3, 228),        netcdftime._netcdftime.datetimenoleap(2007, 9, 16, 0, 0, 0, 0, 6, 259),        netcdftime._netcdftime.datetimenoleap(2007, 10, 16, 12, 0, 0, 0, 1, 289),        netcdftime._netcdftime.datetimenoleap(2007, 11, 16, 0, 0, 0, 0, 4, 320),        netcdftime._netcdftime.datetimenoleap(2007, 12, 16, 12, 0, 0, 0, 6, 350),        netcdftime._netcdftime.datetimenoleap(2008, 1, 16, 12, 0, 0, 0, 2, 16),        netcdftime._netcdftime.datetimenoleap(2008, 2, 15, 0, 0, 0, 0, 4, 46),        netcdftime._netcdftime.datetimenoleap(2008, 3, 16, 12, 0, 0, 0, 5, 75),        netcdftime._netcdftime.datetimenoleap(2008, 4, 16, 0, 0, 0, 0, 1, 106),        netcdftime._netcdftime.datetimenoleap(2008, 5, 16, 12, 0, 0, 0, 3, 136),        netcdftime._netcdftime.datetimenoleap(2008, 6, 16, 0, 0, 0, 0, 6, 167),        netcdftime._netcdftime.datetimenoleap(2008, 7, 16, 12, 0, 0, 0, 1, 197),        netcdftime._netcdftime.datetimenoleap(2008, 8, 16, 12, 0, 0, 0, 4, 228),        netcdftime._netcdftime.datetimenoleap(2008, 9, 16, 0, 0, 0, 0, 0, 259),        netcdftime._netcdftime.datetimenoleap(2008, 10, 16, 12, 0, 0, 0, 2, 289),        netcdftime._netcdftime.datetimenoleap(2008, 11, 16, 0, 0, 0, 0, 5, 320),        netcdftime._netcdftime.datetimenoleap(2008, 12, 16, 12, 0, 0, 0, 0, 350),        netcdftime._netcdftime.datetimenoleap(2009, 1, 16, 12, 0, 0, 0, 3, 16),        netcdftime._netcdftime.datetimenoleap(2009, 2, 15, 0, 0, 0, 0, 5, 46),        netcdftime._netcdftime.datetimenoleap(2009, 3, 16, 12, 0, 0, 0, 6, 75),        netcdftime._netcdftime.datetimenoleap(2009, 4, 16, 0, 0, 0, 0, 2, 106),        netcdftime._netcdftime.datetimenoleap(2009, 5, 16, 12, 0, 0, 0, 4, 136),        netcdftime._netcdftime.datetimenoleap(2009, 6, 16, 0, 0, 0, 0, 0, 167),        netcdftime._netcdftime.datetimenoleap(2009, 7, 16, 12, 0, 0, 0, 2, 197),        netcdftime._netcdftime.datetimenoleap(2009, 8, 16, 12, 0, 0, 0, 5, 228),        netcdftime._netcdftime.datetimenoleap(2009, 9, 16, 0, 0, 0, 0, 1, 259),        netcdftime._netcdftime.datetimenoleap(2009, 10, 16, 12, 0, 0, 0, 3, 289),        netcdftime._netcdftime.datetimenoleap(2009, 11, 16, 0, 0, 0, 0, 6, 320),        netcdftime._netcdftime.datetimenoleap(2009, 12, 16, 12, 0, 0, 0, 1, 350)], standard_name=u'time', calendar=u'365_day', long_name=u'time', var_name='time') 

and observed data:

dimcoord([datetime.datetime(1901, 1, 16, 0, 0),        datetime.datetime(1901, 2, 15, 0, 0),        datetime.datetime(1901, 3, 16, 0, 0), ...,        datetime.datetime(2015, 10, 16, 0, 0),        datetime.datetime(2015, 11, 16, 0, 0),        datetime.datetime(2015, 12, 16, 0, 0)], standard_name='time', calendar=u'gregorian', long_name=u'time', var_name='time') 

so i’m bit confused why worked yesterday isn’t working today. think might able help?

here simplified version of code running

import matplotlib.pyplot plt import iris import iris.coord_categorisation iriscc import iris.plot iplt import iris.quickplot qplt import iris.analysis.cartography import matplotlib.dates mdates  #the first part of code cordex models, second half brings in observed data, , third plots annual temperature in line graph.  def main():     #part 1: cordex models     #bring in models need , give them name     cccma = '/exports/csce/datastore/geos/users/s0xxxx/climate_modelling/afr_44_tas/eraint/1979-2012/tas_afr-44_ecmwf-eraint_evaluation_r1i1p1_cccma-canrcm4_r2_mon_198901-200912.nc'        #load 1 cube given file     cccma = iris.load_cube(cccma)      #remove flat latitude , longitude , use grid latitude , grid longitude make consistent observed data, make sure of longitudes monotonic      lats = iris.coords.dimcoord(cccma.coord('latitude').points[:,0], \                                 standard_name='latitude', units='degrees')     lons = cccma.coord('longitude').points[0]     in range(len(lons)):         if lons[i]>100.:             lons[i] = lons[i]-360.     lons = iris.coords.dimcoord(lons, \                                 standard_name='longitude', units='degrees')      cccma.remove_coord('latitude')     cccma.remove_coord('longitude')     cccma.remove_coord('grid_latitude')     cccma.remove_coord('grid_longitude')     cccma.add_dim_coord(lats, 1)     cccma.add_dim_coord(lons, 2)      #we interested in latitude , longitude relevant malawi      malawi = iris.constraint(longitude=lambda v: 32.5 <= v <= 36., \                          latitude=lambda v: -17. <= v <= -9.)       cccma = cccma.extract(malawi)      #time constraignt make series same     iris.future.cell_datetime_objects = true     t_constraint = iris.constraint(time=lambda cell: 1989 <= cell.point.year <= 2008)      cccma = cccma.extract(t_constraint)      #data in kelvin, show in celcius     cccma.convert_units('celsius')      #we interested in plotting graph time along x ais, need mean of coordinates, i.e. mean temperature across whole country         iriscc.add_year(cccma, 'time')       cccma = cccma.aggregated_by('year', iris.analysis.mean)      cccma.coord('latitude').guess_bounds()     cccma.coord('longitude').guess_bounds()     cccma_grid_areas = iris.analysis.cartography.area_weights(cccma)     cccma_mean = cccma.collapsed(['latitude', 'longitude'],                                                    iris.analysis.mean,                                                    weights=cccma_grid_areas)       #part 2: observed data     #bring in files need , give them name     cru= '/exports/csce/datastore/geos/users/s0xxxx/climate_modelling/actual_data/cru_ts4.00.1901.2015.tmp.dat.nc'      #load 1 cube given file     cru = iris.load_cube(cru, 'near-surface temperature')      #define latitude , longitude     lats = iris.coords.dimcoord(cru.coord('latitude').points, \                                 standard_name='latitude', units='degrees')     lons = cru.coord('longitude').points      #we interested in latitude , longitude relevant malawi      malawi = iris.constraint(longitude=lambda v: 32.5 <= v <= 36., \                          latitude=lambda v: -17. <= v <= -9.)      cru = cru.extract(malawi)      #time constraignt make series same     iris.future.cell_datetime_objects = true     t_constraint = iris.constraint(time=lambda cell: 1989 <= cell.point.year <= 2008)     cru = cru.extract(t_constraint)      #we interested in plotting graph time along x ais, need mean of coordinates, i.e. mean temperature across whole country         iriscc.add_year(cru, 'time')       cru = cru.aggregated_by('year', iris.analysis.mean)      cru.coord('latitude').guess_bounds()     cru.coord('longitude').guess_bounds()     cru_grid_areas = iris.analysis.cartography.area_weights(cru)     cru_mean = cru.collapsed(['latitude', 'longitude'],                                                    iris.analysis.mean,                                                    weights=cru_grid_areas)       #part 3: plot line graph - annual     #set major plot indicators x-axis                                                    plt.gca().xaxis.set_major_locator(mdates.yearlocator(5))      #assign line colours     qplt.plot(cccma_mean, label='canrcm4_eraint', lw=1.5, color='blue')     qplt.plot(cru_mean, label='observed', lw=2, color='black')      #create legend , set location under graph     plt.legend(loc="upper center", bbox_to_anchor=(0.5,-0.05), fancybox=true, shadow=true, ncol=2)      #create title     plt.title('mean near surface temperature malawi 1989-2008', fontsize=11)         #add grid lines     plt.grid()      #save image of graph , include full legend     plt.savefig('eraint_temperature_linegraph_annual', bbox_inches='tight')      #show graph in console     iplt.show()     if __name__ == '__main__':     main() 

thanks! erika

i don't know what's going on time coordinate, workaround might plot against year coordinates:

qplt.plot(cccma_mean.coord('year'), cccma_mean, label='canrcm4_eraint', lw=1.5, color='blue') qplt.plot(cru_mean.coord('year'), cru_mean, label='observed', lw=2, color='black') 

Comments

Popular posts from this blog

angular - Ionic slides - dynamically add slides before and after -

minify - Minimizing css files -

Add a dynamic header in angular 2 http provider -