python - ValueError: Unknown label type: 'unknown' when plotting SVM classifiers in the iris dataset -


i tried plot svm classifiers in iris dataset the starting code can found here. extended pandas dataframe 4 column want plot in same manner.

i made 4 columns code :

iris = iris.assign(sepalratio = iris['sepallengthcm'] / iris['sepalwidthcm']).assign(petalratio = iris['petallengthcm'] / iris['petalwidthcm']).assign(sepalmultiplied = iris['sepallengthcm'] * iris['sepalwidthcm']).assign(petalmultiplied = iris['petallengthcm'] * iris['petalwidthcm']) 

i made specieid colunm :

d = {"iris-setosa" : 0, "iris-versicolor": 1, "iris-virginica": 2} iris['specieid'] = iris['species'].map(d).fillna(-1) 

then, extracted columns plot dataframe after plotting error :

--------------------------------------------------------------------------- valueerror                                traceback (most recent call last) <ipython-input-49-9724675f32fa> in <module>()      77 xx, yy = make_meshgrid(x0, x1)      78  ---> 79 clf, title, ax in zip(models, titles, sub.flatten()):      80     plot_contours(ax, clf, xx, yy,      81                   cmap=plt.cm.coolwarm, alpha=0.8)  <ipython-input-49-9724675f32fa> in <genexpr>(.0)      62           svm.svc(kernel='rbf', gamma=0.7, c=c),      63           svm.svc(kernel='poly', degree=3, c=c)) ---> 64 models = (clf.fit(x, y) clf in models)      65       66 # title plots  c:\users\masc\appdata\local\continuum\anaconda3\lib\site-packages\sklearn\svm\base.py in fit(self, x, y, sample_weight)     150      151         x, y = check_x_y(x, y, dtype=np.float64, order='c', accept_sparse='csr') --> 152         y = self._validate_targets(y)     153      154         sample_weight = np.asarray([]  c:\users\masc\appdata\local\continuum\anaconda3\lib\site-packages\sklearn\svm\base.py in _validate_targets(self, y)     518     def _validate_targets(self, y):     519         y_ = column_or_1d(y, warn=true) --> 520         check_classification_targets(y)     521         cls, y = np.unique(y_, return_inverse=true)     522         self.class_weight_ = compute_class_weight(self.class_weight, cls, y_)  c:\users\masc\appdata\local\continuum\anaconda3\lib\site-packages\sklearn\utils\multiclass.py in check_classification_targets(y)     170     if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',     171             'multilabel-indicator', 'multilabel-sequences']: --> 172         raise valueerror("unknown label type: %r" % y_type)     173      174   valueerror: unknown label type: 'unknown' 

my modified code :

from sklearn import svm  iris = pd.read_csv("iris.csv") # iris dataset pandas dataframe  def make_meshgrid(x, y, h=.02):     """create mesh of points plot in      parameters     ----------     x: data base x-axis meshgrid on     y: data base y-axis meshgrid on     h: stepsize meshgrid, optional      returns     -------     xx, yy : ndarray     """     x_min, x_max = x.min() - 1, x.max() + 1     y_min, y_max = y.min() - 1, y.max() + 1     xx, yy = np.meshgrid(np.arange(x_min, x_max, h),                          np.arange(y_min, y_max, h))     return xx, yy   def plot_contours(ax, clf, xx, yy, **params):     """plot decision boundaries classifier.      parameters     ----------     ax: matplotlib axes object     clf: classifier     xx: meshgrid ndarray     yy: meshgrid ndarray     params: dictionary of params pass contourf, optional     """     z = clf.predict(np.c_[xx.ravel(), yy.ravel()])     z = z.reshape(xx.shape)     out = ax.contourf(xx, yy, z, **params)     return out   # import data play #iris = datasets.load_iris()  iris_numpy_array = iris.as_matrix(columns=none)  print (iris_numpy_array)  # take first 2 features. avoid using two-dim dataset x = iris_numpy_array[:, [1, 2]]  print (x)  y = iris_numpy_array[:, [10]] y = y.ravel()  print (y)  # create instance of svm , fit out data. not scale our # data since want plot support vectors c = 1.0  # svm regularization parameter models = (svm.svc(kernel='linear', c=c),           svm.linearsvc(c=c),           svm.svc(kernel='rbf', gamma=0.7, c=c),           svm.svc(kernel='poly', degree=3, c=c)) models = (clf.fit(x, y) clf in models)  # title plots titles = ('svc linear kernel',           'linearsvc (linear kernel)',           'svc rbf kernel',           'svc polynomial (degree 3) kernel')  # set-up 2x2 grid plotting. fig, sub = plt.subplots(2, 2) plt.subplots_adjust(wspace=0.4, hspace=0.4)  x0, x1 = x[:, 0], x[:, 1] xx, yy = make_meshgrid(x0, x1)  clf, title, ax in zip(models, titles, sub.flatten()):     plot_contours(ax, clf, xx, yy,                   cmap=plt.cm.coolwarm, alpha=0.8)     ax.scatter(x0, x1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')     ax.set_xlim(xx.min(), xx.max())     ax.set_ylim(yy.min(), yy.max())     ax.set_xlabel('sepal length')     ax.set_ylabel('sepal width')     ax.set_xticks(())     ax.set_yticks(())     ax.set_title(title)  plt.show() 

the content of x , y same in code example in code difference the're extracted pandas dataframe.

the original code is:

print(__doc__)  iris = pd.read_csv("iris.csv") # iris dataset pandas dataframe  import numpy np import matplotlib.pyplot plt sklearn import svm, datasets   def make_meshgrid(x, y, h=.02):     """create mesh of points plot in      parameters     ----------     x: data base x-axis meshgrid on     y: data base y-axis meshgrid on     h: stepsize meshgrid, optional      returns     -------     xx, yy : ndarray     """     x_min, x_max = x.min() - 1, x.max() + 1     y_min, y_max = y.min() - 1, y.max() + 1     xx, yy = np.meshgrid(np.arange(x_min, x_max, h),                          np.arange(y_min, y_max, h))     return xx, yy   def plot_contours(ax, clf, xx, yy, **params):     """plot decision boundaries classifier.      parameters     ----------     ax: matplotlib axes object     clf: classifier     xx: meshgrid ndarray     yy: meshgrid ndarray     params: dictionary of params pass contourf, optional     """     z = clf.predict(np.c_[xx.ravel(), yy.ravel()])     z = z.reshape(xx.shape)     out = ax.contourf(xx, yy, z, **params)     return out   # import data play iris = datasets.load_iris() # take first 2 features. avoid using two-dim dataset x = iris.data[:, :2] y = iris.target  # create instance of svm , fit out data. not scale our # data since want plot support vectors c = 1.0  # svm regularization parameter models = (svm.svc(kernel='linear', c=c),           svm.linearsvc(c=c),           svm.svc(kernel='rbf', gamma=0.7, c=c),           svm.svc(kernel='poly', degree=3, c=c)) models = (clf.fit(x, y) clf in models)  # title plots titles = ('svc linear kernel',           'linearsvc (linear kernel)',           'svc rbf kernel',           'svc polynomial (degree 3) kernel')  # set-up 2x2 grid plotting. fig, sub = plt.subplots(2, 2) plt.subplots_adjust(wspace=0.4, hspace=0.4)  x0, x1 = x[:, 0], x[:, 1] xx, yy = make_meshgrid(x0, x1)  clf, title, ax in zip(models, titles, sub.flatten()):     plot_contours(ax, clf, xx, yy,                   cmap=plt.cm.coolwarm, alpha=0.8)     ax.scatter(x0, x1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')     ax.set_xlim(xx.min(), xx.max())     ax.set_ylim(yy.min(), yy.max())     ax.set_xlabel('sepal length')     ax.set_ylabel('sepal width')     ax.set_xticks(())     ax.set_yticks(())     ax.set_title(title)  plt.show() 

i solved problem using template makes svm plot :

from sklearn import svm mlxtend.plotting import plot_decision_regions  x = iris[['sepallengthcm', 'sepalwidthcm']] y = iris['specieid']  clf = svm.svc(decision_function_shape = 'ovo') clf.fit(x.values, y.values)   # plot decision region using mlxtend's awesome plotting function plot_decision_regions(x=x.values,                        y=y.values,                       clf=clf,                        legend=2)  # update plot object x/y axis labels , figure title plt.xlabel(x.columns[0], size=14) plt.ylabel(x.columns[1], size=14) plt.title('svm decision region boundary', size=16) 

this code gives plot : enter image description here


Comments

Popular posts from this blog

angular - Ionic slides - dynamically add slides before and after -

Add a dynamic header in angular 2 http provider -

minify - Minimizing css files -